Increased permeability-glycoprotein inhibition at the human blood-brain barrier can be safely achieved by performing PET during peak plasma concentrations of tariquidar.

نویسندگان

  • William C Kreisl
  • Ritwik Bhatia
  • Cheryl L Morse
  • Alicia E Woock
  • Sami S Zoghbi
  • H Umesha Shetty
  • Victor W Pike
  • Robert B Innis
چکیده

UNLABELLED The permeability-glycoprotein (P-gp) efflux transporter is densely expressed at the blood-brain barrier, and its resultant spare capacity requires substantial blockade to increase the uptake of avid substrates, blunting the ability of investigators to measure clinically meaningful alterations in P-gp function. This study, conducted in humans, examined 2 P-gp inhibitors (tariquidar, a known inhibitor, and disulfiram, a putative inhibitor) and 2 routes of administration (intravenous and oral) to maximally increase brain uptake of the avid and selective P-gp substrate (11)C-N-desmethyl-loperamide (dLop) while avoiding side effects associated with high doses of tariquidar. METHODS Forty-two (11)C-dLop PET scans were obtained from 37 healthy volunteers. PET was performed with (11)C-dLop under the following 5 conditions: injected under baseline conditions without P-gp inhibition, injected 1 h after intravenous tariquidar infusion, injected during intravenous tariquidar infusion, injected after oral tariquidar, and injected after disulfiram. (11)C-dLop uptake was quantified with kinetic modeling using metabolite-corrected arterial input function or by measuring the area under the time-activity curve in the brain from 10 to 30 min. RESULTS Neither oral tariquidar nor oral disulfiram increased brain uptake of (11)C-dLop. Injecting (11)C-dLop during tariquidar infusion, when plasma tariquidar concentrations reach their peak, resulted in a brain uptake of the radioligand approximately 5-fold greater than baseline. Brain uptake was similar with 2 and 4 mg of intravenous tariquidar per kilogram; however, the lower dose was better tolerated. Injecting (11)C-dLop after tariquidar infusion also increased brain uptake, though higher doses (up to 6 mg/kg) were required. Brain uptake of (11)C-dLop increased fairly linearly with increasing plasma tariquidar concentrations, but we are uncertain whether maximal uptake was achieved. CONCLUSION We sought to increase the dynamic range of P-gp function measured after blockade. Performing (11)C-dLop PET during peak plasma concentrations of tariquidar, achieved with concurrent administration of intravenous tariquidar, resulted in greater P-gp inhibition at the human blood-brain barrier than delayed administration and allowed the use of a lower, more tolerable dose of tariquidar. On the basis of prior monkey studies, we suspect that plasma concentrations of tariquidar did not fully block P-gp; however, higher doses of tariquidar would likely be associated with unacceptable side effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pilot study to assess the efficacy of tariquidar to inhibit P-glycoprotein at the human blood-brain barrier with (R)-11C-verapamil and PET.

UNLABELLED Tariquidar, a potent, nontoxic, third-generation P-glycoprotein (P-gp) inhibitor, is a possible reversal agent for central nervous system drug resistance. In animal studies, tariquidar has been shown to increase the delivery of P-gp substrates into the brain by severalfold. The aim of this study was to measure P-gp function at the human blood-brain barrier (BBB) after tariquidar admi...

متن کامل

Approaching complete inhibition of P-glycoprotein at the human blood–brain barrier: an (R)-[11C]verapamil PET study

As P-glycoprotein (Pgp) inhibition at the blood-brain barrier (BBB) after administration of a single dose of tariquidar is transient, we performed positron emission tomography (PET) scans with the Pgp substrate (R)-[(11)C]verapamil in five healthy volunteers during continuous intravenous tariquidar infusion. Total distribution volume (VT) of (R)-[(11)C]verapamil in whole-brain gray matter incre...

متن کامل

Dose-response assessment of tariquidar for inhibition of P-glycoprotein at the human blood-brain barrier using (R)-[11C]verapamil PET

Background Positron emission tomography (PET) with the radiolabelled substrate of the multidrug efflux transporter Pglycoprotein (P-gp) (R)-[C]verapamil (VPM) can be used to assess P-gp function at the blood-brain barrier (BBB). We have shown in rats that performing VPM PET scans after half-maximum inhibition of P-gp with the third-generation P-gp inhibitor tariquidar (TQD) is more sensitive fo...

متن کامل

Factors Governing P-Glycoprotein-Mediated Drug–Drug Interactions at the Blood–Brain Barrier Measured with Positron Emission Tomography

The adenosine triphosphate-binding cassette transporter P-glycoprotein (ABCB1/Abcb1a) restricts at the blood-brain barrier (BBB) brain distribution of many drugs. ABCB1 may be involved in drug-drug interactions (DDIs) at the BBB, which may lead to changes in brain distribution and central nervous system side effects of drugs. Positron emission tomography (PET) with the ABCB1 substrates (R)-[(11...

متن کامل

Pharmacokinetic modeling of P-glycoprotein function at the rat and human blood–brain barriers studied with (R)-[11C]verapamil positron emission tomography

UNLABELLED BACKGROUND This study investigated the influence of P-glycoprotein (P-gp) inhibitor tariquidar on the pharmacokinetics of P-gp substrate radiotracer (R)-[11C]verapamil in plasma and brain of rats and humans by means of positron emission tomography (PET). METHODS Data obtained from a preclinical and clinical study, in which paired (R)-[11C]verapamil PET scans were performed befor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 56 1  شماره 

صفحات  -

تاریخ انتشار 2015